United States Patent # 6,630,507 On Cannabinoids By U.S.A. Fed Gov.

Discussion in 'Science' started by ScrogBetty, Jul 26, 2012.

  1. ScrogBetty

    ScrogBetty Admin Staff Member

    [Source] uspto.gov


    United States Patent # 6,630,507 On Cannabinoids Proves Marijuana Is Medicine


    United States Patent 6,630,507 - October 7, 2003 - Cannabinoids as Antioxidants and Neuroprotectants

    Cannabinoids have been found to have antioxidant properties, unrelated to NMDA receptor antagonism. This new found property makes cannabinoids useful in the treatment and prophylaxis of wide variety of oxidation associated diseases, such as ischemic, age-related, inflammatory and autoimmune diseases. The cannabinoids are found to have particular application as neuroprotectants, for example in limiting neurological damage following ischemic insults, such as stroke and trauma, or in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and HIV dementia. Nonpsychoactive cannabinoids, such as cannabidoil, are particularly advantageous to use because they avoid toxicity that is encountered with psychoactive cannabinoids at high doses useful in the method of the present invention. A particular disclosed class of cannabinoids useful as neuroprotective antioxidants is formula (I) wherein the R group is independently selected from the group consisting of H, CH.sub.3, and COCH.sub.3. ##STR1## Inventors: Hampson; Aidan J. (Irvine, CA), Axelrod; Julius (Rockville, MD), Grimaldi; Maurizio (Bethesda, MD)

    Assignee: The United States of America as represented by the Department of Health and Human Services (Washington, DC)


    FIELD OF THE INVENTION

    The present invention concerns pharmaceutical compounds and compositions that are useful as tissue protectants, such as neuroprotectants and cardioprotectants. The compounds and compositions may be used, for example, in the treatment of acute ischemic neurological insults or chronic neurodegenerative diseases.

    BACKGROUND OF THE INVENTION

    Permanent injury to the central nervous system (CNS) occurs in a variety of medical conditions, and has been the subject of intense scientific scrutiny in recent years. It is known that the brain has high metabolic requirements, and that it can suffer permanent neurologic damage if deprived of sufficient oxygen (hypoxia) for even a few minutes. In the absence of oxygen (anoxia), mitochondrial production of ATP cannot meet the metabolic requirements of the brain, and tissue damage occurs. This process is exacerbated by neuronal release of the neurotransmitter glutamate, which stimulates NMDA (N-methyl-D-aspartate), AMPA (.alpha.-amino-3-hydroxy-5-methyl-4-isoxazole propionate) and kainate receptors. Activation of these receptors initiates calcium influx into the neurons, and production of reactive oxygen species, which are potent toxins that damage important cellular structures such as membranes, DNA and enzymes.

    The brain has many redundant blood supplies, which means that its tissue is seldom completely deprived of oxygen, even during acute ischemic events caused by thromboembolic events or trauma. A combination of the injury of hypoxia with the added insult of glutamate toxicity is therefore believed to be ultimately responsible for cellular death. Hence if the additive insult of glutamate toxicity can be alleviated, neurological damage could also be lessened. Anti-oxidants and anti-inflammatory agents have been proposed to reduce damage, but they often have poor access to structures such as the brain (which are protected by the blood brain barrier).

    Given the importance of the NMDA, AMPA and kainate receptors in the mechanism of injury, research efforts have focused on using antagonists to these receptors to interfere with the receptor mediated calcium influx that ultimately leads to cellular death and tissue necrosis. In vitro studies using cultured neurons have demonstrated that glutamate receptor antagonists reduce neurotoxicity, but NMDA and AMPA/kainate receptor antagonists have different effects. Antagonists to NMDAr prevent neurotoxicity if present during the glutamate exposure period, but are less effective if added after glutamate is removed. In contrast, AMPA/kainate receptor antagonists are not as effective as NMDA antagonists during the glutamate exposure period, but are more effective following glutamate exposure.

    Some of the research on these antagonists has focused on cannabinoids, a subset of which have been found to be NMDA receptor antagonists. U.S. Pat. No. 5,538,993 (3S,4S-delta-6-tetrahydrocannabinol-7-oic acids), U.S. Pat. No. 5,521,215 (sterospecific (+) THC enantiomers), and U.S. Pat. No. 5,284,867 (dimethylheptyl benzopyrans) have reported that these cannabinoids are effective NMDA receptor blockers. U.S. Pat. No. 5,434,295 discloses that the 1,1 dimethylheptyl (DMH) homolog of [3R,4R]-7-hydroxy-.DELTA..sup.6 THC (known as HU-210) is a superpotent cannabinoid receptor agonist with cannabinomimetic activity two orders of magnitude greater than the natural .DELTA..sup.9 THC. The HU-210 dimethylheptyl cannabinoid, has severe side effects, including fatigue, thirst, headache, and hypotension. J. Pharmacol. Sci. 60:1433-1457 (1971). Subjects who received this synthetic cannabinoid with a dimethylheptyl group experienced marked psychomotor retardation, and were unwilling or incapable of assuming an erect position.

    Although it has been unclear whether cannabimimetic activity plays a role in neuroprotection against glutamate induced neurological injury, the teaching in this field has clearly been that a cannabinoid must at least be an antagonist at the NMDA receptor to have neuroprotective effect. Hence cannabidiol (2-[3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-1,3-benzenedi ol or CBD), a cannabinoid devoid of psychoactive effect (Pharm. Rev. 38:21-43, 1986), has not been considered useful as a neuroprotectant. Cannabidiol has been studied as an antiepileptic (Carlini et al., J. Clin. Pharmacol. 21:417S-427S, 1981; Karler et al., J. Clin. Pharmacol. 21:437S-448S, 1981, Consroe et al., J. Clin Phannacol. 21:428S-436S, 1981), and has been found to lower intraocular pressure (Colasanti et al, Exp. Eye Res. 39:251-259, 1984 and Gen. Pharmac. 15:479-484, 1984). ##STR4##

    No signs of toxicity or serious side effects have been observed following chronic administration of cannabidiol to healthy volunteers (Cunha et al., Pharmacology 21:175-185, 1980), even in large acute doses of 700 mg/day (Consroe et al., Pharmacol. Biochem. Behav. 40:701-708, 1991) but cannabidiol is inactive at the NMDA receptor. Hence in spite of its potential use in treating glaucoma and seizures, cannabidiol has not been considered a neuroprotective agent that could be used to prevent glutamate induced damage in the central nervous system.
  2. Monterey Bud

    Monterey Bud Administrator Staff Member

    The research has been done, the scientific data is in!

    Our Gov. Is neck deep in deceit. Particularly when it comes to their federal prohibition of weed and the controlled substance act. Misclassifying this as a schedule 1 substance is a pathetic miscarriage of justice.

Share This Page